A 20-YEAR PLAN TO ENABLE EARTHQUAKE PREDICTION

MARCH 2003
Appendix

GESS Investigators

<table>
<thead>
<tr>
<th>PRINCIPAL AND CO-INVESTIGATORS/INSTITUTIONS</th>
<th>REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgmann, R., Freed, A., and Schmidt, D.–UC Berkeley</td>
<td>InSAR System Requirements for Resolution of Crustal Deformation Parameters Associated with the Earthquake Cycle</td>
</tr>
<tr>
<td>Crippen, R.–JPL</td>
<td>Thermal Imaging of Seismic Events</td>
</tr>
<tr>
<td>Donnellan, A. and Hurst, K.–JPL</td>
<td>Inversion of Earthquake Fault Parameters Using Multiple Look Angles</td>
</tr>
<tr>
<td>Feigl, K., McClusky, S., Herring, T., and Reilinger, R.–Massachusetts Institute of Technology</td>
<td>Geodetic Improvements for Calculating, Analyzing, and Modeling INSAR Measurements in Synergy with GPS</td>
</tr>
<tr>
<td>Fielding, E. J.–JPL; Wright, T. J.–University of Oxford (UK)</td>
<td>Deformation on Complex Fault Zones, Interseismic, Co-seismic and Post-seismic Strain</td>
</tr>
<tr>
<td>Melbourne, T. and Baxter, S.–Central Washington University; Webb, F.–JPL</td>
<td>Quantifying Earth’s Surface Deformation Budget</td>
</tr>
<tr>
<td>Olsen, K. and Peyrat, S.–UC Santa Barbara</td>
<td>Which Rupture Dynamics Parameters Can Be Estimated from SAR and Strong Ground Motion Data?</td>
</tr>
<tr>
<td>Sammis, C. G.–University of Southern California; Ivins, E.–JPL</td>
<td>Using GESS to Detect Stress Shadows Following Large Earthquakes and to Monitor Their Decay</td>
</tr>
<tr>
<td>Sandwell, D. and Fialko, Y.–Scripps/UC San Diego</td>
<td>Requirements for Observing Slow Crustal Deformation Due to Tectonic and Volcanic Processes in the Presence of Tropospheric Noise and Decorrelation</td>
</tr>
<tr>
<td>Shinozuka, M. and Bardet, J.–University of Southern California; Eguchi, R.–ImageCat, Inc.</td>
<td>Change Detection Studies for Liquefaction Ground Failure</td>
</tr>
<tr>
<td>Simons, M.–Caltech</td>
<td>Constraining Co-seismic Fault Motion and Surface Disruption of Large Earthquakes Using INSAR and Seismology</td>
</tr>
<tr>
<td>Taylor, P. and Purucker, M.–NASA/GSFC</td>
<td>Searching for a Magnetic Signature from Earthquakes in the Ionosphere</td>
</tr>
<tr>
<td>Webb, F.–JPL; Emardson, R.–JPL (visiting); Simons, M.–Caltech</td>
<td>Neutral Atmospheric Delay in Interferometric Synthetic Aperture Radar Applications: Statistical Description and Mitigation</td>
</tr>
</tbody>
</table>
GESS Science Definition Team

Chair: Carol A. Raymond
Jet Propulsion Laboratory, California Institute of Technology

Douglas Burbank
University of California, Santa Barbara

Benjamin F. Chao
NASA Goddard Space Flight Center

Andrea Donnellan
Jet Propulsion Laboratory, California Institute of Technology

Alan Gillespie
University of Washington

Thomas L. Henyey
University of Southern California

Thomas Herring
Massachusetts Institute of Technology

Thomas Jordan
University of Southern California

Donald L. Turcotte
Cornell University

Mary Lou Zoback
U.S. Geological Survey

References


Ivins, E., personal communication to Carol A. Raymond, 2003.


Lundgren, P. R., InSAR time series resolution of blind thrust and surface fault creep, 3 pp., Final Report, GESS Requirements Definition Study, 2002.


Zebker, H. and P. Segall, Characterizing space–time patterns of slip at depth along fault systems: InSAR measurement and system requirements, 6 pp., Final Report, GESS Requirements Definition Study, JPL Contract 1232132, 2002.